Fabricating Polyethylene oxide (PEO) Nanofiber Scaffolds with Different Molecular Weight for Viral Infection Diseases

Document Type : Original Article


1 Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University

2 Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran



Recently, a novel dosage form topical vaginal delivery has been developed utilizing drug-fibers fabricated by electrospinning. Biocompatible and biodegradable nanofiber meshes suitable for drug delivery systems were electrospun based on poly (ethylene oxide) (PEO) with high molecular weight (HMW) and low molecular weight (LMW) to design innovative vaginal delivery systems. It is desirable to encapsulate a drug inside the fibers to enhance the drug antiviral activity in addition to controlling the fiber diameter. The surface morphology and average diameter of the nanofibers were determined by field emission scanning electron microscopy (FE-SEM). Based on SEM results it was revealed that the HMW PEO has more uniform nanofibers with good average diameters than LMW PEO. We formulated acyclovir (ACV) at 20 wt% into electrospun solid dispersions construct from PEO nanofibers and examined distribution in characterizing drug release rates into aqueous media. We assumed that ACV-loaded PEO nanofiber scaffolds were prepared using electrospinning when applied to vaginal environment, should remain undamaged as long as the environment is acidic.

Graphical Abstract

Fabricating Polyethylene oxide (PEO) Nanofiber Scaffolds with Different Molecular Weight for Viral Infection Diseases


[1]      B. Pant, M. Park, S.-J. Park, Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review, Pharmaceutics. 11 (2019) 305.
[2]      S. Kajdič, O. Planinšek, M. Gašperlin, P. Kocbek, Electrospun nanofibers for customized drug-delivery systems, J. Drug Deliv. Sci. Technol. 51 (2019) 672–681.
[3]      R. Contreras-Cáceres, L. Cabeza, G. Perazzoli, A. Díaz, J.M. López-Romero, C. Melguizo, J. Prados, Electrospun nanofibers: Recent applications in drug delivery and cancer therapy, Nanomaterials. 9 (2019) 656.
[4]      A. Aidun, A. Zamanian, F. Ghorbani, Immobilization of polyvinyl alcohol‐siloxane on the oxygen plasma‐modified polyurethane‐carbon nanotube composite matrix, J. Appl. Polym. Sci. 137 (2020) 48477.
[5]      C.P. Barnes, S.A. Sell, E.D. Boland, D.G. Simpson, G.L. Bowlin, Nanofiber technology: designing the next generation of tissue engineering scaffolds, Adv. Drug Deliv. Rev. 59 (2007) 1413–1433.
[6]      N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 325–347.
[7]      A. Keirouz, M. Chung, J. Kwon, G. Fortunato, N. Radacsi, 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 12 (2020) e1626.
[8]      D. Liang, B.S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug Deliv. Rev. 59 (2007) 1392–1412.
[9]      F. Ghorbani, A. Zamanian, A. Aidun, Bioinspired polydopamine coating‐assisted electrospun polyurethane‐graphene oxide nanofibers for bone tissue engineering application, J. Appl. Polym. Sci. 136 (2019) 47656.
[10]    A. Safaei Firoozabady, A. Aidun, R. Kowsari-Esfahan, A. Allahyari, Characterization and evaluation of graphene oxide incorporated into nanofibrous Scaffold for bone tissue engineering, J. Tissues Mater. 2 (2019) 1–13.
[11]    F.S. Hosseini, F. Soleimanifar, A. Aidun, S.E. Enderami, E. Saburi, H.Z. Marzouni, M. Khani, A. Khojasteh, A. Ardeshirylajimi, Poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix, J. Cell. Physiol. 234 (2019) 11537–11544.
[12]    S. Sabra, D.M. Ragab, M.M. Agwa, S. Rohani, Recent advances in electrospun nanofibers for some biomedical applications, Eur. J. Pharm. Sci. 144 (2020) 105224.
[13]    Ş.M. Eskitoros-Togay, Y.E. Bulbul, S. Tort, F.D. Korkmaz, F. Acartürk, N. Dilsiz, Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system, Int. J. Pharm. 565 (2019) 83–94.
[14]    D. Taylor-Robinson, P. Horner, A. Pallecaros, Diagnosis of some genital-tract infections: part 2. Molecular tests and the new challenges, Int. J. STD AIDS. 31 (2020) 198–207.
[15]    K.J. Looker, N.J. Welton, K.M. Sabin, S. Dalal, P. Vickerman, K.M.E. Turner, M.-C. Boily, S.L. Gottlieb, Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: a population attributable fraction analysis using published epidemiological data, Lancet Infect. Dis. 20 (2020) 240–249.
[16]    K. Kłysik, A. Pietraszek, A. Karewicz, M. Nowakowska, Acyclovir in the treatment of herpes viruses–a review, Curr. Med. Chem. (2020).
[17]    E. Ahani, A. Aidun, Neurological toxicity of nanomaterials in the brain: Hazard effects of these materials in the central nervous system, J. Bioeng. Res. 1 (2019) 38–44. https://doi.org/10.22034/jbr.2019.97271.
[18]    E. Ahani, M. Montazer, T. Toliyat, M. Mahmoudi Rad, A novel biocompatible antibacterial product: Nanoliposomes loaded with poly(hexamethylene biguanide chloride), J. Bioact. Compat. Polym. 32 (2017). https://doi.org/10.1177/0883911516675367.
[19]    E. Ahani, M. Montazer, T. Toliyat, M. Mahmoudi Rad, T. Harifi, Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity, J. Microencapsul. 34 (2017). https://doi.org/10.1080/02652048.2017.1296500.
[20]    E. Ahani, T. Toliyat, M. Mahmoudi Rad, Comparing size particle, release study and cytotoxicity activity of PHMB encapsulated in different liposomal formulations: neutral and cationic liposomes, J. Bioeng. Res. 1 (2019) 1–6.
[22]    G. Singhvi, S. Patil, V. Girdhar, S.K. Dubey, Nanocarriers for topical drug delivery: approaches and advancements, Nanosci. Nanotechnology-Asia. 9 (2019) 329–336.
[23]    S. Maleki Dizaj, S. Sharifi, A. Jahangiri, Electrospun nanofibers as versatile platform in antimicrobial delivery: Current state and perspectives, Pharm. Dev. Technol. 24 (2019) 1187–1199.
[24]    T.G. Kebede, M.B. Seroto, R.C. Chokwe, S. Dube, M.M. Nindi, Adsorption of antiretroviral (ARVs) and related drugs from environmental wastewaters using nanofibers, J. Environ. Chem. Eng. (2020) 104049.
[25]    F. Tuğcu-Demiröz, S. Saar, S. Tort, F. Acartürk, Electrospun Metronidazole-Loaded Nanofibers for Vaginal Drug Delivery, Drug Dev. Ind. Pharm. (2020) 1–37.
[26]    V. Izadi, P.K. Shahri, H. Ahani, A compressed-sensing-based compressor for ECG, Biomed. Eng. Lett. (2020) 1–9.
[27]    S.R. Surakanti, S.A. Khoshnevis, H. Ahani, V. Izadi, Efficient Recovery of Structrual Health Monitoring Signal based on Kronecker Compressive Sensing, Int. J. Appl. Eng. Res. 14 (2019) 4256–4261.
[28]    M. Tavakoli, H. Ahani, Removing EOG Artifacts from EEG Signals Using a Modified Wavelet-RLS Method, J. Bioeng. Res. 2 (2020).
[29]    V. Izadi, A.H. Ghasemi, P.K. Shahri, Negotiating the Steering Control Authority within Haptic Shared Control Framework, SAE Technical Paper, 2020.
[30]    B. Albertini, N. Passerini, M. Di Sabatino, B. Vitali, P. Brigidi, L. Rodriguez, Polymer–lipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate, Eur. J. Pharm. Sci. 36 (2009) 591–601.
[31]    M. Altındiş, F.G. Aslan, H. Uzuner, H. Ünal, M. Köroğlu, S. Kulac, A. Karadenizli, Comparison of antiviral effect of olive leaf extract and propolis with acyclovir on herpes simplex virus type 1, Mikrobiyol. Bul. 54 (2020) 79–94.
[32]    W. Cui, X. Li, X. Zhu, G. Yu, S. Zhou, J. Weng, Investigation of drug release and matrix degradation of electrospun poly (DL-lactide) fibers with paracetanol inoculation, Biomacromolecules. 7 (2006) 1623–1629.