The Role of Hypoxia in Tumor Progression, Metastasis, and Effect on Tumour Microenvironment

Document Type : Review Article

Authors

1 Plasma medicine (plas-med) interest group- Universal Scientific Education & Research Network (USERN)

2 Department of Cellular & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

3 Cellular developmental biogogy, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

10.22034/jtm.2019.83190

Graphical Abstract

The Role of Hypoxia in Tumor Progression, Metastasis, and Effect on Tumour Microenvironment

Keywords


References
[1]    Gilkes, D. M., et al. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nature Reviews Cancer.2014;14(6): 430.
[2]    Martino, M. M., et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science.2014; 343(6173): 885-888.
[3]    Pickup, M. W., et al. "The extracellular matrix modulates the hallmarks of cancer." EMBO reports.2014;15(12): 1243-1253.
[4]    Bosman, F. T. and I. Stamenkovic. Functional structure and composition of the extracellular matrix. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2003;200(4): 423-428.
[5]    Naba, A., et al. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology.2016; 49: 10-24.
[6]    Screen, H. R., et al. Tendon functional extracellular matrix. Journal of Orthopaedic Research. 2015;33(6): 793-799.
[7]    Lee, S., et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. The Journal of cell biology. 2005;169(4): 681-691.
[8]    Arpino, V., et al. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology. 2015;44: 247-254.
[9]    Ten Dijke, P. and H. M. Arthur. Extracellular control of TGFβ signalling in vascular development and disease. Nature reviews Molecular cell biology. 2007;8(11): 857.
[10]    Swartz, M. A., et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer research: canres. 2012;0122.2012.
[11]    Polyak, K. and R. Kalluri. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harbor perspectives in biology: a003244;2010.
[12]    Bristow, R. G. and R. P. Hill. Hypoxia and metabolism: hypoxia, DNA repair and genetic instability. Nature Reviews Cancer. 2008;8(3): 180.
[13]    Lunt, S. J., et al. The tumor microenvironment and metastatic disease. Clinical & experimental metastasis 2009;26(1): 19-34.
[14]    Rankin, E. B. and A. J. Giaccia. Hypoxic control of metastasis. Science. 2016;352(6282): 175-180.
[15]    Brown, J. M. and W. R. Wilson. Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer 2004; 4(6): 437.
[16]    Moeller, B. J., et al. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer and Metastasis Reviews. 2007;26(2): 241-248.
[17]    Semenza, G. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor Laboratory Press. 2011
[18]    Dewhirst, M. W., et al. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature Reviews Cancer 2008;8(6): 425.
[19]    Semenza, G. L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy." Trends in pharmacological sciences. 2012;33(4): 207-214.
[20]    Imamura, T., et al. HIF‐1α and HIF‐2α have divergent roles in colon cancer. International journal of cancer 2009;124(4): 763-771.
[21]    Dafni, H., et al. Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-1 and myc activity downstream of platelet-derived growth factor receptor. Cancer research: 2010;0008-5472.
[22]    Ackerman, D. and M. C. Simon. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends in cell biology. 2014;24(8): 472-478.
[23]    Boroughs, L. K. and R. J. DeBerardinis. Metabolic pathways promoting cancer cell survival and growth. Nature cell biology. 2015;17(4): 351.
[24]    Guillaumond, F., et al. Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways. Archives of biochemistry and biophysics. 2014;545: 69-73.
[25]    Puente, B. N., et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014;157(3): 565-579.
[26]    Olcina, M., et al. Targeting hypoxic cells through the DNA damage response. Clinical cancer research: clincanres. 2010;0286.2010.
[27]    Wang, G., et al. Advances in the targeting of HIF-1alpha and future therapeutic strategies for glioblastoma multiforme. Oncol Rep. 2017;37(2): 657-670.
[28]    Suzuki, H., et al. Association of the hypoxia-inducible factor-1alpha (HIF-1alpha) gene polymorphisms with prognosis in ovarian clear cell carcinoma. J Ovarian Res. 2019;12(1): 7.
[29]    Lu, Y., et al. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells. Sci Rep 2016; 6: 39123.
[30]    Weinmann, M., et al. Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. Faseb j. 2004;18(15): 1906-1908.
[31]    Humpton, T. J. and K. H. Vousden. Regulation of Cellular Metabolism and Hypoxia by p53. Cold Spring Harb Perspect Med. 2016;6(7).
[32]    Leszczynska, K. B., et al. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT." J Clin Invest. 2015;125(6): 2385-2398.
[33]    Siemann, D. W.  Tumor microenvironment, John Wiley & Sons. 2011.
[34]    Vaupel, P. and L. Harrison. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9 Suppl. 2004;5: 4-9.
[35]    Ratcliffe, P., et al. Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: from physiology to therapeutics. Hypoxia (Auckl). 201; 5: 11-20.
[36]    Challapalli, A., et al. Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging. 2017;5(3): 225-253.
[37]    Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2008 Apr 2;640(1-2):174-9.
[38]    Wouters, B. G. and M. Koritzinsky. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11): 851-864.
[39]    Cytotoxic Effects of Coated Gold Nanoparticles on PC12 Cancer Cell. HZ Marzouni, F Tarkhan, A Aidun, K Shahzamani, HRJ Tigh,  Galen Medical Journal.2018;7, 1110
[40]    D'Ignazio, L. and S. Rocha.  Hypoxia Induced NF-kappaB." Cells. 2016;5(1).
[41]    Harris, A. L. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1): 38-47.
[42]    Suzuki, H., et al. Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene. 2001;20(41): 5779-5788.
[43]    Lancaster, D. E., et al. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem J. 2004;383(Pt. 3): 429-437.
[44]    Agani, F. and B. H. Jiang. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets. 2013;13(3): 245-251.
[45]    Zhang, J. and Q. Zhang (2018). "VHL and Hypoxia Signaling: Beyond HIF in Cancer." Biomedicines 6(1).
[46]    Sufan, R. I., et al. Oxygen-independent degradation of HIF-alpha via bioengineered VHL tumour suppressor complex. EMBO Mol Med. 2009;1(1): 66-78.
[47]    Masoud, G. N. and W. Li. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5): 378-389.
[48]    King, A., et al. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25(34): 4675-4682.
[49]    Selak, M. A., et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1): 77-85.
[50]    Jochmanova, I., et al. Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J Natl Cancer Inst. 2013;105(17): 1270-1283.
[51]    Briere, J. J., et al. Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet. 2005;14(21): 3263-3269.
[52]    Ban, H. S., et al. Hypoxia-inducible factor (HIF) inhibitors: a patent survey (2011-2015). Expert opinion on therapeutic patents. 2016;26(3): 309-322.
[53]    Courtnay, R., et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Molecular biology reports. 2015;42(4): 841-851.
[54]    Xiang, L., et al. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget. 2015;6(14): 11768.
[55]    Chan, D. A. and A. J. Giaccia. Hypoxia, gene expression, and metastasis. Cancer and Metastasis Reviews. 2007;26(2): 333-339.
[56]    Stock, C. and A. Schwab.  Protons make tumor cells move like clockwork. Pflügers Archiv-European Journal of Physiology. 2009;458(5): 981-992.
[57]    Grillon, E., et al. The spatial organization of proton and lactate transport in a rat brain tumor. PloS one. 2011;6(2): e17416.
[58]    Jiang, J., et al. EMT: a new vision of hypoxia promoting cancer progression. Cancer biology & therapy. 2011;11(8): 714-723.
[59]    Sullivan, R. and C. H. Graham. Hypoxia-driven selection of the metastatic phenotype. Cancer and Metastasis Reviews. 2007;26(2): 319-331.
[60]    Catalano, V., et al. Tumor and its microenvironment: a synergistic interplay. Seminars in cancer biology, Elsevier. 2013.
[61]    Rofstad, E. K., et al. Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clinical cancer research. 2007;13(7): 1971-1978.
[62]    A review of the clinical implications of breast cancer biology. Y Parsa, SA Mirmalek, FE Kani, A Aidun, SA Salimi-Tabatabaee, Electronic physician.2016;8 (5), 2416
[63]    Finger, E. C. and A. J. Giaccia. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer and Metastasis Reviews. 2010;29(2): 285-293.
[64]    Peinado, H., et al. Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer. 2017;17(5): 302.
[65]    65-Giannoni, E., et al. Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxidants & redox signaling. 2011;14(12): 2361-2371.
[66]    Portillo-Lara, R. and N. Annabi. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment. Lab on a chip. 2016;16(21): 4063-4081.
[67]    Massagué, J. and A. C. Obenauf. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586): 298.
[68]    Dayan, F., et al. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1α. Cancer research. 2006;66(7): 3688-3698.
[69]    Chang, Q., et al. Effect of antisense hypoxia-inducible factor 1α on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas. 2006;32(3): 297-305.
[70]    Li, D.-w., et al. Expression and Significance of Hypoxia-Inducible Factor–1α and Survivin in Laryngeal Carcinoma Tissue and Cells. Otolaryngology-Head and Neck Surgery. 2013;148(1): 75-81.
[71]    Zhang, L. and R. P. Hill. Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. Cancer research. 2007;67(16): 7789-7797.
[72]    Schito, L. and G. L. Semenza. Hypoxia-inducible factors: master regulators of cancer progression. Trends in cancer. 2016;2(12): 758-770.
[73]    Cairns, R., et al. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Current molecular medicine. 2003;3(7): 659-671.