An antibacterial delivery system based on Eucalyptus camaldulensis loaded in starch microspheres

Document Type: Original Article

Authors

1 Nanotechnology Researchers Company, Tehran, Iran.

2 Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

3 Research Institute of Forests and Rangelands, Tehran, Iran.

4 Molecular Microbiology Research Center, Shahed University, Tehran, Iran.

5 School of Advanced Technologies in Medicine, Tehran University of Medical Science. Iran.

6 National Cell bank. Pasteur Institute, Tehran, Iran.

10.22034/jtm.2019.93448

Graphical Abstract

An antibacterial delivery system based on Eucalyptus camaldulensis loaded in starch microspheres


[1]    Stertman L, Lundgren E, Sjoholm I. Starch microparticles as a vaccine adjuvant: only uptake in Peyer's patches decides the profile of the immune response. Vaccine. 2006;24(17):3661-8. Epub 2006/03/04.

[2]    Illum L, Fisher AN, Jabbal-Gill I, Davis SS. Bioadhesive starch microspheres and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides. International Journal of Pharmaceutics. 2001;222(1):109-19. Epub 2001/06/19.

[3]    Jafari SM, Assadpoor E, Bhandari B, He Y. Nano-particle encapsulation of fish oil by spray drying. Food Research International. 2008;41(2):172-83.

[4]    Loksuwan J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids. 2007;21(5–6):928-35.

[5]    Krishnan S, Bhosale R, Singhal RS. Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydrate Polymers. 2005;61(1):95-102.

[6]    Bayram A, Bayram M, Tekin AR. Spray drying of sumac flavour using sodium chloride, sucrose, glucose and starch as carriers. Journal of Food Engineering. 2005;69(2):253-60.

[7]    Shitara K, Ikami I, Munakata M, Muto O, Sakata Y. Hepatic arterial infusion of mitomycin C with degradable starch microspheres for unresectable intrahepatic cholangiocarcinoma. Clinical Oncology (Royal College of Radiologist). 2008;20(3):241-6. Epub 2008/01/29.

[8]    Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release. 2007;119(1):5-24. Epub 2007/03/27.

[9]    Jobling S. Improving starch for food and industrial applications. Current Opinion in Plant Biology. 2004;7(2):210-8. Epub 2004/03/09.

[10]    Raina CS, Singh S, Bawa AS, Saxena DC. A comparative study of Indian rice starches using different modification model solutions. LWT - Food Science and Technology. 2007;40(5):885-92.

[11]    Ilium L, Farraj N, Critchley H, Davis SS. Nasal administration of gentamicin using a novel microsphere delivery system. International Journal of Pharmaceutics. 1988;46(3):261-5.

[12]    Owlia P, Sadeghzadeh L, Orang F, Rafienia M, Bonakdar S. Evaluation of ceftriaxone releasing from microspheres based on starch against salmonella spp. Biotechnology. 2007;6:597–600.

[13]    Mundargi RC, Shelke NB, Rokhade AP, Patil SA, Aminabhavi TM. Formulation and in-vitro evaluation of novel starch-based tableted microspheres for controlled release of ampicillin. Carbohydrate Polymers. 2008;71(1):42-53.

[14]    Tuovinen L, Peltonen S, Liikola M, Hotakainen M, Lahtela-Kakkonen M, Poso A, et al. Drug release from starch-acetate microparticles and films with and without incorporated α-amylase. Biomaterials. 2004;25(18):4355-62.

[15]    Tuovinen L, Ruhanen E, Kinnarinen T, Ranka S, Pelkonen J, Urtti A, et al. Starch acetate microparticles for drug delivery into retinal pigment epithelium "in vitro study". Journal of Controlled Release. 2004;98(3):407-13.

[16]    Mahmoudi M, Orang F, Hojjati Emami S, Rafienia M. A study of starch addition on burst effect and diameter of polyurethane microspheres containing theophylline. Polymers for Advanced Technologies. 2007;19(3):167–70.

[17]    Jain AK, Khar RK, Ahmed FJ, Diwan PV. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. European Journal of Pharmaceutics and Biopharmaceutics. 2008;69(2):426-35.

[18]    Richardson JL, Illum L. (D) Routes of delivery: Case studies: (8) The vaginal route of peptide and protein drug delivery. Advanced Drug Delivery Reviews. 1992;8(2–3):341-66.

[19]    Sturesson C, Degling Wikingsson L. Comparison of poly(acryl starch) and poly(lactide-co-glycolide) microspheres as drug delivery system for a rotavirus vaccine. Journal of Controlled Release. 2000;68(3):441-50.

[20]    Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, van Blitterswijk CA, Feijen J. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers: 1. Influence of preparation techniques on particle characteristics and protein delivery. Journal of Controlled Release. 2000;67:233-48.

[21]    Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, et al. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials. 2005;26(15):2231-8.

[22]    Sturesson C, Carlfors J. Incorporation of protein in PLG-microspheres with retention of bioactivity. Journal of Controlled Release. 2000;67:171-8.

[23]    Li B-Z, Wang L-J, Li D, Bhandari B, Li S-J, Lan Y, et al. Fabrication of starch-based microparticles by an emulsification-crosslinking method. Journal of Food Engineering. 2009;92(3):250-4.

[24]    Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine. 2006;6(1):39.

[25]    Delaquis PJ, Stanich K, Girard B, Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International journal of food microbiology. 2002;74(1):101-9.

[26]    Okamura H, Mimura A, Yakou Y, Niwano M, Takahara Y. Antioxidant activity of tannins and flavonoids in Eucalyptus rostrata. Phytochemistry. 1993;33(3):557-61.

[27]    Ramezani H, Singh H, Batish D, Kohli R. Antifungal activity of the volatile oil of Eucalyptus citriodora. Fitoterapia. 2002;73(3):261-2.

[28]    Cermelli C, Fabio A, Fabio G, Quaglio P. Effect of eucalyptus essential oil on respiratory bacteria and viruses. Current microbiology. 2008;56(1):89-92.

[29]    Silva J, Abebe W, Sousa S, Duarte V, Machado M, Matos F. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. Journal of Ethnopharmacology. 2003;89(2):277-83.

[30]    Swanston-Flatt S, Day C, Bailey C, Flatt P. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia. 1990;33(8):462-4.

[31]    Tyagi AK, Malik A. Antimicrobial potential and chemical composition of  Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chemistry. 2011;126(1):228-35.

[32]    Göbel H, Schmidt G, Soyka D. Effect of peppermint and eucalyptus oil preparations on neurophysiological and experimental algesimetric headache parameters. Cephalalgia. 1994;14(3):228-34.

[33]    Adams RP. Identification of essential oil components by gas chromatography/mass spectroscopy. 4th, editor. Salt Lake: Allured Pub Corp; 2007.

[34]    Shibamoto T. Capillary gas chromatography in essential oil analysis. New York: Huethig Verlag; 1987.

[35]    Madigan MT, Martinko JM, Parker J. Brock Biology of Microorganisms 11 ed. New York Prentice Hall; 2005.

[36]    CDC. Division of Bacterial and Mycotic Diseases. Escherichia coli O157:H7. General Information (fact sheet). 2007; Available from: www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm.

[37]    Vogt RL, Dippold L. Escherichia coli O157:H7 outbreak associated with consumption of ground beef, June-July 2002. Public Health Reports. 2005;120(2):174-8. Epub 2005/04/22.

[38]    Fang Y-y, Wang L-j, Li D, Li B-z, Bhandari B, Chen XD, et al. Preparation of crosslinked starch microspheres and their drug loading and releasing properties. Carbohydrate Polymers. 2008;74(3):379-84.

[39]    Chiao CS, Price JC. Formulation, preparation and dissolution characteristics of propranolol hydrochloride microspheres. Journal of Microencapsulation. 1994;11(2):153-9. Epub 1994/03/01.

[40]    Peppas NA, Smolen VF. Mathematical modeling of diffusion process in drug delivery polymeric systems. bioavailability and the pharmacokinetic control of drug response. New York: Wiley; 1980.

[41]    Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231-41. Epub 2001/02/24.

[42]    Cortesi R, Esposito E, Luca G, Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials. 2002;23(11):2283-94.

[43]    Blanco MD, Alonso MJ. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres. European Journal of Pharmaceutics and Biopharmaceutics. 1997;43(3):287-94.

[44]    Vilivalam VD, Illum II, Iqbal II. Starch capsules: an alternative system for oral drug delivery. Pharmaceutical Science and Technology Today. 2000;3(2):64-9. Epub 2000/02/09.