Tissue Engineering in Lower Urinary Tract Reconstruction

Document Type : Review Article


1 Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran

2 Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Urology Research Center, Guilan University of Medical Sciences, Rasht, Iran

4 Pasteur Institute of Iran, National Cell Bank of Iran, Tehran

5 Anesthesiology Research Development Center, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.


Pediatric urology diseases and disorders are often diagnosable by special clinical symptoms. Congenital disorders, iatrogenic injuries, inflammatory diseases, infections, tumor, cancers and other conditions of the genitourinary system are in this category. The treatment of these disorders usually involve classical surgeries including organ transplant from deceased or other methods, which are associated with transplant-related side effects and complications. Tissue engineering is a rapidly expanding, promising field which addresses tissue and organ failure and organ reconstruction. A myriad of Clinical and preclinical studies have been conducted on different treatment methods and tissue engineering in the field of pediatric urology, which have been reviewed in our present study.


1.           Aidun A, Zamanian A, Ghorbani F. Novel bioactive porous starch‐siloxane matrix for bone regeneration: physicochemical, mechanical, and in‐vitro properties. Biotechnol Appl Biochem. 2018;
2.           Yamzon J, Perin L, Koh CJ. Current status of tissue engineering in pediatric urology. Vol. 18, Current Opinion in Urology. 2008. p. 404–7.
3.           Tract. A in stem cell therapy for the lower urinary. Advances in stem cell therapy for the lower urinary tract. World J Stem Cells. 2010;2(1):1–4.
4.           El-Kassaby AW, Retik AB, Yoo JJ, Atala A. Urethral stricture repair with an off-the-shelf collagen matrix. J Urol. 2003;169(1):170–3.
5.           Petrovic V, Stankovic J, Stefanovic V. Tissue Engineering of the Urinary Bladder: Current Concepts and Future Perspectives. Sci World J [Internet]. 2011;11:1479–88. Available from: http://www.hindawi.com/journals/tswj/2011/958478/abs/
6.           Pastor-Navarro T, Moratalla-Charcos LM, Bermell-Marco L, Beamud-Cortés M, Osca-García JM, Gil-Salom M. Stem cells and regenerative medicine in urology, part 1: General concepts, kidney, testis and urinary incontinence. Actas Urológicas Españolas (English Ed [Internet]. 2010;34(6):510–5. Available from: http://www.sciencedirect.com/science/article/pii/S2173578610701220
7.           Kajbafzadeh AM, Sabetkish S, Heidari R, Ebadi M. Tissue-engineered cholecyst-derived extracellular matrix: A biomaterial for in vivo autologous bladder muscular wall regeneration. Pediatr Surg Int. 2014;30(4):371–80.
8.           Kajbafzadeh AM, Sabetkish S, Tourchi A, Amirizadeh N, Afshar K, Abolghasemi H, et al. The application of tissue-engineered preputial matrix and fibrin sealant for urethral reconstruction in rabbit model. Int Urol Nephrol. 2014;46(8):1573–80.
9.           Kajbafzadeh AM, Tourchi A, Mousavian AA, Rouhi L, Tavangar SM, Sabetkish N. Bladder muscular wall regeneration with autologous adipose mesenchymal stem cells on three-dimensional collagen-based tissue-engineered prepuce and biocompatible nanofibrillar scaffold. J Pediatr Urol. 2014;10(6):1051–8.
10.         Drewa T, Chlosta P, Czajkowski R. Will tissue-engineered urinary bladders change indications for a laparoscopic cystectomy? Surg Innov. 2010;17(4):295–9.
11.         Chen W, Shi C, Yi S, Chen B, Zhang W, Fang Z, et al. Bladder Regeneration by Collagen Scaffolds With Collagen Binding Human Basic Fibroblast Growth Factor. J Urol. 2010;183(6):2432–9.
12.         Lim HJ, Choi JY, Noh HJ, Chung HY, Lim JO, Chun SY, et al. Bladder Submucosa Matrix-Alginate Hybrid Scaffold. Tissue Eng Regen Med. 2011;8(1):A9–15.
13.         Nakanishi Y, Chen G, Komuro H, Ushida T, Kaneko S, Tateishi T, et al. Tissue-Engineered Urinary Bladder Wall Using PLGA Mesh-Collagen Hybrid Scaffolds: A Comparison Study of Collagen Sponge and Gel as a Scaffold. In: Journal of Pediatric Surgery. 2003. p. 1781–4.
14.         Ghafari AM, Rajabi-Zeleti S, Naji M, Ghanian MH, Baharvand H. Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers. Sci Iran. 2017;24(6).
15.         Alberti C. From the intestinal neobladder to the bioartificial bladder: Remarks on some biological implications. Minerva Urol e Nefrol. 2000;52(4):219–22.
16.         Zambon JP, De Sá Barretto LS, Sawaki E Nakamura AN, Duailibi S, Leite K, Magalhaes RS, et al. Histological changes induced by Polyglycolic-Acid (PGA) scaffolds seeded with autologous adipose or muscle-derived stem cells when implanted on rabbit bladder. Organogenesis. 2014;10(2):278–88.
17.         Pok S, Dhane D V., Madihally S V. Computational simulation modelling of bioreactor configurations for regenerating human bladder. Comput Methods Biomech Biomed Engin. 2013;16(8):840–51.
18.         Wei X, Li DB, Xu F, Wang Y, Zhu YC, Li H, et al. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering. Chin Med J (Engl). 2011;124(4):568–73.
19.         Smith GL, Kobashi KC. Augmentation Cystoplasty. Vol. 6, Current Bladder Dysfunction Reports. 2011. p. 31–6.
20.         Lam Van Ba O, Aharony S, Loutochin O, Corcos J. Bladder tissue engineering: A literature review. Vol. 82, Advanced Drug Delivery Reviews. 2015. p. 31–7.
21.         Talab SS, Kajbafzadeh AM, Elmi A, Tourchi A, Sabetkish S, Sabetkish N, et al. Bladder reconstruction using scaffold-less autologous smooth muscle cell sheet engineering: Early histological outcomes for autoaugmentation cystoplasty. BJU Int. 2014;114(6):937–45.
22.         Coburn JC, Brody S, Billiar KL, Pandit A. Biaxial mechanical evaluation of cholecyst-derived extracellular matrix: A weakly anisotropic potential tissue engineered biomaterial. J Biomed Mater Res - Part A. 2007;81(1):250–6.
23.         Brody S, McMahon J, Yao L, O’Brien M, Dockery P, Pandit A. The effect of cholecyst-derived extracellular matrix on the phenotypic behaviour of valvular endothelial and valvular interstitial cells. Biomaterials. 2007;28(8):1461–9.
24.         Burugapalli K, Pandit A. Characterization of tissue response and in vivo degradation of cholecyst-derived extracellular matrix. Biomacromolecules. 2007;8(11):3439–51.
25.         Probst M, Dahiya R, Carrier S, Tanagho E a. Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol. 1997;79(4):505–15.
26.         Pope IV JC, Davis MM, Smith J, Walsh MJ, Ellison PK, Rink RC, et al. The ontogeny of canine small intestinal submucosa regenerated bladder. J Urol. 1997;158(3 SUPPL.):1105–12.
27.         Khan M, Majeed A, Hayat W, Ullah H, Naz S, Shah SA, et al. Hypospadias Repair: A Single Centre Experience. Plast Surg Int [Internet]. 2014;2014:1–7. Available from: http://www.hindawi.com/journals/psi/2014/453039/
28.         M.B. A, L. H, S. DN-C, J.M. B, E. D. Long-term outcome of severe hypospadias [Internet]. Vol. 6, Journal of Pediatric Urology. 2010. p. 469–72. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2010498113
29.         Kropp BP, Ludlow JK, Spicer D, Rippy MK, Badylak SF, Adams MC, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology. 1998;52(1):138–42.
30.         Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology. 1999;54(3):407–10.
31.         Sievert KD, Bakircioglu ME, Nunes L, Tu R, Dahiya R, Tanagho EA. Homologous acellular matrix graft for urethral reconstruction in the rabbit: Histological and functional evaluation. J Urol. 2000;163(6):1958–65.
32.         Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int. 2007;99(5):1162–5.
33.         De Filippo RE, Yoo JJ, Atala A. Urethral Replacement Using Cell Seeded Tubularized Collagen Matrices. J Urol [Internet]. 2002;168(4):1789–93. Available from: http://www.sciencedirect.com/science/article/pii/S002253470564414X
34.         Dorin RP, Pohl HG, De Filippo RE, Yoo JJ, Atala A. Tubularized urethral replacement with unseeded matrices: What is the maximum distance for normal tissue regeneration? World J Urol. 2008;26(4):323–6.
35.         Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet. 2011;377(9772):1175–82.
36.         Kajbafzadeh AM, Abolghasemi H, Eshghi P, Alizadeh F, Elmi A, Shafaattalab S, et al. Single-donor fibrin sealant for repair of urethrocutaneous fistulae following multiple hypospadias and epispadias repairs. J Pediatr Urol. 2011;7(4):422–7.
37.         Hick EJ, Morey AF. Initial experience with fibrin sealant in pendulous urethral reconstruction. Is early catheter removal possible? J Urol. 2004;171(4):1547–9.
38.         Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154–64.
39.         Pilatz A, Schultheiss D, Gabouev AI, Schlote N, Mertsching H, Jonas U, et al. Isolation of primary endothelial and stromal cell cultures of the corpus cavernosum penis for basic research and tissue engineering. Eur Urol. 2005;47(5):710–8.
40.         Kwon TG, Yoo JJ, Atala A. Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol [Internet]. 2002;168(4 Pt 2):1754–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12352353
41.         Jin Z, Wu YG, Yuan YM, Peng J, Gong YQ, Li GY, et al. Tissue engineering penoplasty with biodegradable scaffold Maxpol-T cografted autologous fibroblasts for small penis syndrome. J Androl. 2011;32(5):491–5.
42.         Ferretti L, Giuliani M, Bessède T, Qiu X, Zhang H, Alsaid B, et al. Tissue Engineering for Penile Surgery: Comparative Study of Noncellular and Cell-Seeded Synthetic Grafts for Tunica Albuginea Replacement. J Sex Med. 2012;9(2):625–31.