Optimum spacer removal and sintering temperature for porous magnesium scaffold fabrication

Document Type : Original Article


1 Department of materials science and engineering, Golpayegan University of Technology

2 Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran



Porous magnesium scaffolds have been of interest to tissue engineering researchers because of their biodegradability and biocompatibility. Space holder method is a simple method for fabrication these scaffolds, but suffer from clean spacer agent removal process. This study was conducted to introduce a modified dissolution method (Distilled water+HF acid) for the carbamide (as spacer agent) removal from inside the magnesium scaffold. Also the effect of the sintering temperature on mechanical and structural characteristics were studied by the compression test and the optical and Scanning Electron Microscopes (OM and SEM). In addition, effect on phases present in scaffold after sintering was investigated using x-ray diffraction (XRD) analysis. The results showed that the HF 48% solution is superior to that of previously used solutions (water, ethanol and sodium hydroxide) for carbamide removal, including more carbamide removal efficiency (96±2%), and partial formation of MgF2 phase on the surface of magnesium scaffold. Also, raising the sintering temperature led to the increase of the scaffold shrinkage and the improvement of its mechanical characteristics.

Graphical Abstract

Optimum spacer removal and sintering temperature for porous magnesium scaffold fabrication


[1]         J. O. Hollinger, T. A. Einhorn, B. Doll & C. Sfeir, Bone Tissue Engineering, CRC Press (2004); 54-56.
[2]         M-qi. Cheng, T. Wahafu, G-f. Jiang, W. Liu, Y-q. Qiao, X-c. Peng, T. Cheng, X-l. Zhang, G. He & X-y. Liu, "A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration", Scientific Reports-6 (2016); 1-14.
[3]         R. Lanza, R. Langer & J. Vacanti, "Principles of Tissue Engineering, 2nd ed.", Academic Press, (2000).
[4]         M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau & L. Berzina-Cimdina, "Biodegradable Materials and Metallic Implants-A Review", Journal of functional biomaterials-8 (2017); 44-52.
[5]         W. Suchanek & M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", Journal of Materials Research-13 (1998); 94-117.
[6]         Z.N. Husna, C.C. Lee, S. Norbahiyah & A.B. Sanuddin, "Processing and Characterization of Porous Mg Alloy for Biomedical Applications", Australian Journal of Basic and Applied Sciences-8 (2014); 160-164.
[7]         H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, & M.V. Manuel, "Magnesium as a Biodegradable and Bioabsorbable Material for Medical Implants", Minerals, Metals & Materials Society-61 (2009); 31-34.
[8]         M.P. Staiger, A.M. Pietak, J. Huadmai & G. Dias, "Magnesium and its alloys as orthopedic biomaterials: A review" Biomaterials-27 (2006); 1728–1734.
[9]         [9] H. Zhuang, Y. Han & A. Feng, "Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds", Materials Science and Engineering C-28 (2008); 1462–1466.
[10]     Vascular Intervention EuroPCR, PARIS, France and BUELACH, Switzerland, (2017).
[11]     E. Moradi, M.E. Hosseinabadi, M. Khodaei & S. Toghyani, "Magnesium/Nano Hydroxyapatite Porous Biodegradable Composite for Biomedical Applications", Materials Research Express-6 (2019).
[12]     L. Li, J. Gao & Y. Wang, "Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid", Surface & Coatings Technology-185 (2004); 92– 98.
[13]     L. Yilong, Q. Guilbao, Y. Yang, L. Xuewei & B. Chenguang, "Preparation and Compressive Properties of Magnesium Foam", Rare Metal Materials and Engineering-45 (2016); 2498-2502.
[14]     J. Čapek & D. Vojtěch "Properties of porous magnesium prepared by powder metallurgy", Materials Science and Engineering C-33 (2013); 564–569.
[15]     S. Toghyani & M. Khodaei, "Fabrication and characterization of magnesium scaffold using different processing parameters", Materials Research Express-5 (2018); 035407.
[16]     S.F. Aida, H. Zuhailawati & A.S. Anasyida, "The Effect of Space Holder Content and Sintering Temperature of Magnesium Foam on Microstructural and Properties Prepared by Sintering Dissolution Process (SDP) using Carbamide Space Holder", Procedia Engineering-184 (2017); 290 – 297.
[17]     G.L. Hao, F. S. Han & W.D. Li, "Processing and mechanical properties of magnesium foams", Journal of Porous Materials-16 (2009); 251-256.
[18]     C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimogima, Y. Chino & T. Asahina, "Processing of biocompatible porous Ti and Mg", Scripta Materials-45 (2001); 1147-1153.
[19]     Z.S. Seyedraoufi & Sh. Mirdamadi, "Synthesis, microstructure and mechanical properties of porous Mg–Zn scaffolds", mechanical behavior of biomedical materials-21 (2013); 1-8.
[20]     E. Aghion & Y. Perez, "Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology", Materials Characterization (2014).
[21]     T.H. Reddy, S. Pal, K.C. Kumarc, M.K. Mohan & V. Kokol, " Finite element analysis for mechanical response of magnesium foams with regular structure obtained by powder metallurgy method", Procedia Engineering-149 ( 2016); 425–430.
[22]     A. Vahid, P. Hodgson & Y. Li, "New porous Mg composites for bone implants", Journal of Alloys and Compounds-724 (2017); 176-186.
[23]     P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach & J. Brauer, "Thermal decomposition (pyrolysis) of urea in an open reaction vessel", Thermochimica Acta-424 (2004); 131-142.
[24]     H. Bafti & A. Habibolahzadeh, "Compressive properties of aluminum foam produced by powder-carbamide spacer route", Materials and Design-52 (2013); 404-411.
[25]     M. Khodaei, M. Meratian1 & O. Savabi, "Effect of spacer type and cold compaction pressure on structural and mechanical properties of porous titanium scaffold", Powder Metallurgy VOL 58, NO 2 153 (2015).
[26]     C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa & M. Mabuchi, "Compressibility of porous magnesium foam: dependency on porosity and pore size", Materials Letters-58 (2004); 357–360.
[27]     J. Zhang, N. Kong, J. Niu, Y. Shi, H. Li, Y. Zhou & G. Yuan, "Influence of fluoride treatment on surface properties, biodegradation and cytocompatibility of Mg–Nd–Zn–Zr alloy", J Mater Sci: Mater Med-25 (2014); 791–799.
[28]     K.Y. Chiu, M.H. Wong, F.T. Cheng & H.C. Man, "Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants", Surface & Coatings Technology-202 (2007); 590–598.
[29]     A. Drynda, T. Hassel, Re. Hoehn, A. Perz, F.W. Bach, M. Peuster, "Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications", Journal of Biomedical Materials Research Part A, (2009); 763-775.
[30]     M.S. Uddin, C. Hall & P. Murphy, "Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants", Sci. Technol. Adv. Mater.-16 (2015) 053501.
[31]     J.H. Jo, B.G. Kang, K.S. Shin, H.E. Kim, B.D. Hahn, D.S, Park & Y.H. Koh, "Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility", J Mater Sci: Mater Med-22 (2011); 2437–2447.
[32]     L. Mao, G. Yuan, J. Niu, Y. Zong & W. Ding, "In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy by hydrofluoric acid treatment", Materials Science and Engineering C-33 (2013); 242–250.
[33]     W.Z. Yan, X. Ma, T. Geng, H. Wu, & Z. Li, "Mg-MOF-74/MgF2 Composite Coating for Improving the Properties of Magnesium Alloy Implants: Hydrophilicity and Corrosion Resistance", Materials-11 396 (2018).
[34]     W. Yu, H. Zhao, Zhenyu Ding, Z. Zhang, B. Sun, J. Shen, S. Chen, B. Zhang, K. Yang, M. Liu, D. Chen, Y. He, "In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration", Colloids and Surfaces B: Biointerfaces-149 (2017); 330–340.
[35]     H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul Kadir & M. Daroonparvar, "Effect of fluoride treatment on corrosion behavior of Mg-Ca binary alloy for implant application", Trans. Nonferrous Met. Soc. China-23 (2013); 699-710.
[36]     P. Makkar, H.J. Kang, A.R. Padalhin, I. Park, B.G. Moon & B.T. Lee, "Development and properties of duplex MgF2/ PCL coatings on biodegradable magnesium alloy for biomedical applications", PLOS ONE | (2018).
[37]     T.F. da Conceicao, N. Scharnag, C. Blawert, W. Dietzel & K.U. Kainer, "Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behaviour", Thin Solid Films-518 ( 2010); 5209-5218.
[38]     Y.C. Yang, C.Y. Tsai, Y.H. Huang, & C.S. Lin, "Formation Mechanism and Properties of Titanate Conversion Coating on AZ31 Magnesium Alloy", Journal of The Electrochemical Society-159 (5) (2012); C226-C232.
[39]     Y. Yun, Z. Dong, D. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Z. Xu, P. Kumta & C. Sfeir, "Biodegradable Mg corrosion and osteoblast cell culture studies", Materials Science and Engineering C-29 (2009); 1814–1821.
[40]     T.F. da Conceiçao & N. Scharnagl, "Fluoride conversion coatings for magnesium and its alloys for the biological environment", Surface Modification of Magnesium and its Alloys for Biomedical Applications (2015).
[41]     F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath & F. Beckmann, "n vivo corrosion and corrosion protection of magnesium alloy LAE442", Acta Biomaterialia-6 (2010); 1792–1799.
[42]     Z.S. Seyedraoufi & Sh. Mirdamadi, "In vitro biodegradability and biocompatibility of porous Mg-Zn scaffolds coated with nano hydroxyapatite via pulse electrodeposition", Trans. Nonferrous Met. Soc.China-25 (2015); 4018-4027.
[43]     Grise, "Corrosion of Ceramics in Aqueous Hydrofluoric Acid", Journal of the American Ceramic Society-83 (2000); 1160-1164.
[44]     H.K. Chen, Y.Y. Jie & L. Chang, "Oxidation characteristics of MgF2 in air at high temperature", IOP Conference Series: Materials Science and Engineering-170 (2017); 012035.
[45]     D.M. Liu, "Porous Hydroxyapatite Bioceramics", Key Engineering Materials-115 (1996); 209-232.
[46]     S.C.P. Cachinho & R.N. Correia, "Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour, J Mater Sci: Mater Med-19 (2008); 451-457.